

Problem Set: Sequences

J. Balasubramaniam[†]

- 1) Show that the following sequences converge by the ϵK definition.
 - (i) $\lim_{n \to \infty} \frac{2n}{n+4\sqrt{n}} = 2$ (iii) $\lim_{n \to \infty} \frac{n^2 1}{2n^2 + 3} = \frac{1}{2}$
 - (ii) $\lim_{n \to \infty} \frac{10^7}{n} = 0$ (iv) $\lim_{n \to \infty} \frac{3n+1}{2n+3} = \frac{3}{2}$
- 2) Show that the sequence $x_n = \frac{1}{\ln(n+1)}$ converges to 0 using the ϵK definition. Also find the constant $K(\epsilon)$ when $\epsilon = \frac{1}{2}$ and $\epsilon = \frac{1}{10}$.
- 3) Discuss the convergence/divergence of the following sequences (0 < a < 1) and (b > 1).
 - (i) $x_n = \frac{n^2}{n+5}$ (vi) $x_n = \frac{1-5n^4}{n^4+8n^3}$ (xi) $x_n = \frac{n!}{n^n}$ (ii) $x_n = \frac{n}{10^7}$ (vii) $x_n = \frac{\cos n}{n}$ (xii) $x_n = \frac{2^{3n}}{3^{2n}}$ (iii) $x_n = \sqrt{n+1} - \sqrt{n}$ (viii) $x_n = \frac{1}{3^n}$ (xiii) $x_n = \frac{n}{b^n}$
 - (iv) $x_n = \frac{(-1)^n}{n+1}$ (ix) $x_n = \frac{n^2}{e^n}$ (xiv) $x_n = \frac{b^n}{n^2}$
 - (v) $x_n = \frac{1-2n}{1+2n}$ (x) $x_n = a^n$ (xv) $x_n = \frac{5^n}{n!}$
- 4) Show that sequence is monotone and bounded. Then find the limit.
 - (i) $x_1 = 1; x_{n+1} = \frac{x_n+1}{3}$ (ii) $x_1 = 2; x_{n+1} = \sqrt{2x_n+1}$
- 5) Discuss whether the following sequences are Cauchy or not.
 - (i) $x_n = \frac{1}{n^2}$ (iii) $x_n = \ln n^2$
 - (ii) $x_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ (iv) $x_n = \sqrt{n}$

6) Show that the sequence $x_n = \frac{4-7n^6}{n^6+3}$ converges using the $\epsilon - K$ definition.

† The author is with the Department of Mathematics, IIT Hyderabad 502285 India e-mail: jbala@iith.ac.in.

- 7) Comment on the convergence of the sequence $x_n = \sin n$.
- 8) Does the recursively defined sequence $s_1 = 1$; $s_n = \frac{s_n+1}{5}$ converge? If so, find its limit.