

Problem Set: Series

J. Balasubramaniam[†]

1) Discuss the convergence/divergence of the following series:

- (vi) $u_n = \frac{2^n 1}{2^n}$ (i) $u_n = (\frac{1}{\sqrt{2}})^n$ (xi) $u_n = \frac{n!}{(2^n)^3}$ (vii) $u_n = \frac{\cos n\pi}{5^n}$ (ii) $u_n = (-1)^{n+1} \frac{3}{2^n}$ (xii) $u_n = \frac{n^3}{2n}$ (viii) $u_n = \frac{n!}{1000^n}$ (iii) $u_n = \sqrt{n+1} - \sqrt{n}$ (xiii) $u_n = \frac{1}{n\sqrt{n+1}}$ (ix) $u_n = ln \frac{n}{n+1}$ (iv) $u_n = e^{-2n}$ (xiv) $u_n = \frac{\sin^2 n}{n^2}$ (v) $u_n = \frac{2}{10^n}$ (x) $u_n = (\frac{e}{a})^n$ (xv) $u_n = \frac{e^{n\pi}}{\pi^{ne}}$
- 2) Show that the following series diverge:
 - (i) $(-1)^n$ (ii) $\frac{n}{n+1}$ (iv) $\cos \frac{n\pi}{2}$ (iii) $\frac{n}{\sqrt{n^2+1}}$
- 3) Determine the conditional / absolute convergence of the following series:
 - (iii) $u_n = \frac{(-1)^n}{n \ln n^2}$ (i) $u_n = \frac{(-1)^n}{\ln n^2}$ (v) $u_n = \frac{(-3)^n}{n!}$ (ii) $u_n = \frac{(-2)^n}{n!}$ (iv) $u_n = \frac{1}{\sqrt{n}} - \frac{1}{n}$ (vi) $u_n = \frac{\cos n\pi}{\sqrt{n}}$
- 4) Let $p \ge 0$ and consider the series $\sum \frac{(-1)^{n-1}}{n^p}$. Determine for what values of p is the series conditionally / absolutely convergent.
- 5) Comment on the convergence of the following series:
 - (i) $\sum_{n=1}^{\infty} \frac{2^n (n!)^2}{(2n)!}$ (iii) $\sum_{n=1}^{\infty} \left(1 - \frac{3}{n}\right)^n$ (ii) $\sum_{n=1}^{\infty} \frac{e^{n\pi}}{\pi^{ne}}$
- 6) Is the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 \ln n}$ convergent? Is it absolutely convergent? 7) Give examples of sequences/series with the following properties:
- - a) A sequence (x_n) such that $(|x_n|)$ converges but the original sequence (x_n) does not.
- b) Two divergent sequences $(x_n), (y_n)$ such that the sequence (x_ny_n) converges.
- c) An unbounded sequence that has a convergent subsequence.
- d) Two divergent series $\sum x_n, \sum y_n$ such that the series $\sum x_n y_n$ converges.

† The author is with the Department of Mathematics, IIT Hyderabad 502285 India e-mail: jbala@iith.ac.in.

- e) Two convergent series $\sum x_n, \sum y_n$ such that the series $\sum x_n y_n$ diverges. f) A convergent series $\sum x_n$ such that the series $\sum x_n^2$ diverges. g) A convergent series $\sum x_n$ such that the series $\sum \sqrt{x_n}$ diverges.