

Problem Set: Functional Series

J. Balasubramaniam[†]

- 1) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{4^n n^p}$ w.r.to both x and an arbitrary constant p.
- 2) Expand in Fourier series the function $f(x) = \frac{\pi^2}{12} \frac{x^2}{4}$ in the interval $[-\pi, \pi]$ and hence show that $\frac{\pi^2}{12} = \sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{1}{n^2}$.
- 3) Show using Taylor's series that $e^{i\theta} = \sin \theta + i \cos \theta$.
- 4) Give examples of the following, with a brief justification.
 - (a) A function f(x) and a point x_0 such that $\frac{df}{dx}(x_0) = 0$ but x_0 is not an extreme point.
 - (b) A function f(x) and a point x_0 such that x_0 is an extreme point but $\frac{df}{dx}(x_0)$ does not exist.
 - (c) A function f(x) and a point x_0 such that $\frac{df}{dx}$ is continuous at x_0 but not differentiable at x_0 .
 - (d) A power series such that it is convergent only at x = 1.
 - (e) A function f(x) that is nowhere piecewise monotonic.
 - (f) A sequence of functions $\{f_n\}$ defined everywhere (i.e., for all $x \in \mathbb{R}$) but whose functional series $\sum_{n=1}^{\infty} f(x)$ does **not** converge anywhere (i.e., for any $x \in \mathbb{R}$).
- † The author is with the Department of Mathematics, IIT Hyderabad 502285 India e-mail: jbala@iith.ac.in.

- (g) A sequence of functions $\{f_n\}$ to show that the converse of the following statement is **not true**: "If a sequence of continuous functions $\{f_n\}$ converges uniformly to f, then f is continuous."
- 5) Determine the exact intervals of convergence for the following:

(i)
$$\sum n^2 x^2$$
 (vi) $\sum \sqrt{nx^n}$

(ii)
$$\sum \frac{2^n}{x^2} x^n$$
 (vii) $\sum \frac{3^n}{n4^n} x^n$

(iii)
$$\sum \frac{x^n}{n^n}$$
 (viii) $\sum \frac{n^3}{3^n} x^n$

(iv)
$$\sum \frac{1}{(n+1)^2 2^n} x^n$$
 (ix) $\sum \frac{3^n}{\sqrt{n}} x^{2n+1}$

(v)
$$\sum \frac{(-1)^n}{n^2 4^n} x^n$$
 (x) $\sum x^n$

- Consider a power series ∑ a_nxⁿ with radius of convergence ℝ.
 - (a) Prove that if all the coefficients a_n are integers and if infinitely many of them are non-zeros, then $\mathbb{R} \leq 1$.

(b) If
$$|a_n|^{\frac{1}{n}} \to l$$
, then $\mathbb{R} = \begin{cases} 0 & l = \infty \\ \infty & l = 0 \\ \frac{1}{l} & 0 < l < \infty \end{cases}$

(c) If
$$a_n \neq 0$$
 for all large n and $\frac{|a_{n+1}|}{|a_n|} \rightarrow l$, the

conclusion of (b) above still holds.

(d) Verify the above with the following series whose co-efficients are given as:

(i)
$$a_n = \frac{n^3}{3^n}$$

(ii) $a_n = \frac{2^n}{n!}$
(iii) $a_{2n-1} = \frac{1}{4^n}; a_{2n} = \frac{1}{9^n}$

- Consider a power series ∑ a_nxⁿ with a finite radius of convergence ℝ. Prove that if all the coefficients a_n ≥ 0 for all n and if the series converges at ℝ, then the series also converges at −**R**.
- 8) For each n ∈ N, let f_n = (cos x)ⁿ. Show that
 (a) each f_n is continuous.
 - (b) $\lim f_n(x) = 0$ unless x is a multiple of π .
 - (c) $\lim_{x \to \infty} f_n(x) = 1$ if x is an even multiple of π .
 - (d) $\lim f_n(x)$ does not exist if x is an odd multiple of π .
- 9) For each n ∈ N, let f_n = ¹/_n sin x. Show that
 (a) each f_n is differentiable.
 - (b) $\lim f_n(x) = 0$ for all $x \in \mathbb{R}$.
 - (c) $\lim f'_n(x)$ need not exist (for instance at $x = \pi$).
- 10) For each n ∈ N, let f_n(x) = nxⁿ for x ∈ [0, 1]. Show that
 (a) lim f_n(x) = 0 for all x ∈ [0, 1].

(b)
$$\lim_{n \to \infty} \int_{0}^{1} f_n(x) dx = 1.$$

- 11) For each $n \in \mathbb{N}$, let $f_n(x) = \left(x \frac{1}{n}\right)^2$ for $x \in [0, 1]$. (a) Find $f(x) = \lim f_n(x)$.
 - (b) Does (f_n) converge pointwise on [0, 1]?
 - (c) Does it also converge uniformly?
- 12) Obtain the Taylor series of the following functions about the indicated point a:
 - (i) $\tan x; a = \frac{\pi}{4}$ (v) $\cos^2 x; a = \frac{\pi}{4}$

(ii)
$$e^{\sin x}; a = 0$$
 (vi) $\frac{1}{x^3}; a = 7$

(iii)
$$\ln(\cos x)a = 0$$

(vii) $\frac{a}{1 + x^4}; a = 3$
(iv) $\cos^2 x; a = 0$
(viii) $\tan^{-1} x; a = 0$

13) Suppose that f_n is differentiable on an interval *I* centered at x = a and that

$$g(x) = b_0 + b_1(x - a) + \dots + b_n(x - a)^n,$$

is a polynomial of degree *n* with constant coefficients $b_0, b_1, ..., b_n$. Let E(x) = f(x) - g(x). Show that if

- (a) E(a) = 0 (i.e., the approximation error is zero at x = a).
- (b) $\lim_{x \to a} \frac{E(x)}{(x-a)^n} = 0$ (i.e.,the error is negligible when compared to $(x-a)^n$) then $b_k = \frac{f'(a)}{k!}, k = 0, ..., n$. Thus the Taylor's polynomial is the only polynomial of degree less than or equal to n whose error is zero at x = a and negligible when compared to $(x-a)^n$.

- 14) Find the Fourier Series of the following functions:
 - (i) $f_x = x^3; -\pi \le x \le \pi$ (v) $f_x = \begin{cases} x; -2 \le x < 0\\ \pi x; 0 < x \le 2 \end{cases}$ (ii) $f_x = x + |x|; x \in [-\pi, \pi]$ (vi) $f_x = x^3; -2 \le x \le 2$ (iii) $f_x = \begin{cases} 1; -\frac{\pi}{2} \le x \le \frac{\pi}{2}\\ -1; \frac{\pi}{2} < x \le \frac{3\pi}{2} \end{cases}$ (vii) $f_x = x + |x|; \frac{\pi}{2} \le x \le \frac{\pi}{2}$ (iv) $f_x = \begin{cases} 1; -1 \le x \le 0\\ -1; 0 < x \le 1 \end{cases}$ (viii) $f_x = \begin{cases} x; -\frac{\pi}{2} \le x \le \frac{\pi}{2}\\ \pi - x; x \in [-\frac{\pi}{2}, \frac{3\pi}{2}] \end{cases}$
- 15) Expand the following functions such that we obtain (i) only a sine series and (ii) only a cosine series:
 - (i) $f_x = x; 0 \leq x \leq 2\pi$ (iv) $f_x = e^x; 0 \leq x \leq L$
 - (ii) $f_x = \pi x; 0 \leqslant x \leqslant \pi$ (v) $f_x = x^2; 0 \leqslant x \leqslant L$
 - (iii) $f_x = \sin^2 x; 0 \leqslant x \leqslant \pi$ (vi) $f_x = 4 x^2; 0 \leqslant x \leqslant L$
- 16) Find the Fourier Series of $f_x = \frac{(\pi x)^2}{4}$ on $0 \le x \le 2\pi$ and hence show that
 - (a) $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ (c) $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ (b) $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \dots$
- 17) Find the Fourier Series of $f_x = \sqrt{1 \cos x}$ on $(0, 2\pi)$ and hence deduce that

$$\frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

18) Let f be a periodic function with period 2π.
 Let f_n be the trignometric polynomial of order n given as follows

$$f_n(x) = a_0 + \sum_{k=1}^n a_k \cos kx + b_k \sin kx.$$

19) Show that if f_n minimizes the integral of the square of the error in approximating f,viz.,

$$\int_{-\pi}^{\pi} \left[f(x) - f_n(x)\right]^2 dx,$$

then the coefficients of f_n are given as Fourier coefficients.

- 20) Say True or False, with a brief justification.
 - (a) The series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ is dominated on $0 \le x \le 1$.
 - (b) A function f is Riemann integral over [a, b] if and only if f is continuous over [a, b].
 - (c) $\int_0^1 x^m (1-x)^n dx = \int_0^1 x^n (1-x)^m dx$ for any m > 0, n > 0.
 - (d) $e^{i\theta} = \sin\theta + i \cos\theta$.
 - (e) $\int_{-\infty}^{+\infty} f(x) dx = \lim_{b \to \infty} \int_{-b}^{+b} f(x) dx$ for any real function f.
- 21) Give example of
 - (a) a power series whose radius of convergence is (-3,3).
 - (b) a functional series that is pointwise convergent but not uniformly convergent.
 - (c) a function f and an interval [a, b] such that f is not Riemann integral over [a, b].
 - (d) an infinitely differentiable function whose Taylor's series does not converge to it.
 - (e) two functions $\phi(x)$ and $\psi(x)$ and an interval [a, b] such that

$$\int_{a}^{b} \phi(x) \cdot \psi(x) dx = 0.$$

- 22) Find the radius of convergence of the power series $\sum_{n=2}^{\infty} \frac{x^n}{n \ln n}$.
- 23) Discuss the Maclaurin's series expansion of $f(x) = (1+x)^m$ for any $m \in \mathbb{R}$ and hence find a series expansion of $\sin^{-1} x$.
- 24) Expand $\frac{1}{1+x^2}$ in powers of x and hence find a power series expansion of $\tan^{-1} x$.
- 25) Comment on the convergence of the series $\sum a_n \text{ where } a_n = \begin{cases} \frac{n}{2^n}, & \text{if } n \text{ is odd} \\ \frac{1}{2^n}, & \text{if } n \text{ is even} \end{cases}.$
- 26) Discuss the Gamma function as an improper integral with respect to its convergence and show that $\Gamma(n+1) = n!$.
- 27) Expand in Fourier series the function $f(x) = \frac{\pi^2}{12} \frac{x^2}{4}$ in the interval $[-\pi, \pi]$ and hence show that $\frac{\pi^2}{12} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$.
- 28) Comment on the convergence of the following integrals:

(a)
$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$
 (b) $\int_0^\infty x \sin x dx$.

- 29) Consider the function $f(x,y) = \begin{cases} \frac{xy(x^2-y^2)}{x^2+y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$
 - Show that $\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y)$ where $(x, y) \neq (0, 0)$.

• Is
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{\partial^2 f}{\partial y \partial x}(0,0)$$
? Substantiate.

- 30) Evaluate $\int_{a}^{b} e^{x} dx$ by calculating it as the limit of Riemann sum.
- 31) Find the *total* area of a figure bounded by y = x, y = 2x and the curve $y = x^3$.
- 32) Consider the cycloid $x = r(t \sin t);$ $y = r(1 - \cos t).$
 - (a) Find the arc length of one arch $(0 \le t \le 2\pi)$.
 - (b) Find the surface area of the solid generated by rotating this arch about the *x*-axis.