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Sequences

J. Balasubramaniam† and G V V Sharma∗

Abstract—This manual covers the properties of se-

quences through examples. Python scripts are provided

for understanding the properties of sequences.

1 Limit

Problem 1.1. Sketch the following sequence.

xn =
2n

n + 4
√

n
, n ≥ 0 (1.1)

Solution:

import numpy as np
import m a t p l o t l i b . p y p l o t as p l t

n = np . l i n s p a c e ( 0 , 1 e9 , 1 0 0 )
T n = ( 2 . 0 ∗ n ) / ( n+4.0∗ np . s q r t ( n ) )
p l t . p l o t ( n , T n)
p l t . g r i d ( )
p l t . x l a b e l ( ’ $n$ ’ )
p l t . y l a b e l ( ’ $x n$ ’ )
#Comment t h e f o l l o w i n g l i n e

# p l t . s a v e f i g ( ’ . . / f i g s / seq converge

. eps ’ )

p l t . show ( )

Definition 1.1. The sequence xn converges to a limit
L if for ǫ > 0, there exists an integer K (ǫ) such that
for all n > K (ǫ),

|xn − L| < ǫ (1.2)

Proposition 1.1. Archimedian Property: For any
real number x, there exists an integer n > x.

Problem 1.2. Guess the value of L for xn in (1.1)
as n→ ∞.
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Solution: From Fig. 1.1, L = 2.

Problem 1.3. Show that xn in (1.1) converges to
L = 2 using Definition 1.1.

Solution:

|xn − 2| =
∣

∣

∣

∣

∣

∣
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n
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(1.3)

=
8
√

n

n + 4
√

n
(1.4)

<
8
√

n

n
=

8
√

n
(1.5)

Using Proposition 1.1, choose K (ǫ) > 64
ǫ2

to be an
integer.

n > K (ǫ)⇒ n >
64

ǫ2
⇒ 8
√

n
< ǫ (1.6)

Thus, there exists K (ǫ) such that |xn − 2| < ǫ.

Problem 1.4. Let xn =
1

ln(n+1)
.

1) Find the value to which xn converges.

2) Find K (ǫ) when ǫ = 1
2

and ǫ = 1
10

.
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2 Monotonicity and Boundedness

Definition 2.1. A sequence xn is said to be mono-
tonically increasing if

xn+1 > xn (2.1)

xn is monotonically decreasing if xn+1 < xn.

Definition 2.2. The sequence xn is said to be
bounded if for all n > N

|xn| < M (2.2)

for some positive real number M.

Problem 2.1. Consider the sequence defined by

xn =















1 n = 1
xn−1+1

3
n > 1

(2.3)

Is the sequence

1) Monotonic?

2) Bounded?

Solution: The following code plots Fig. 2.1. It is
obvious from the figure that xn is both monotoni-
cally decreasing as well as bounded.

import numpy as np
import m a t p l o t l i b . p y p l o t as p l t

x = [ ]
temp = 1
f o r i in range ( 1 0 0 ) :

x . append ( temp )
temp = ( temp +1 . 0 ) / 3 . 0

p l t . p l o t ( range ( 1 0 0 ) , x )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $n$ ’ )
p l t . y l a b e l ( ’ $x n$ ’ )
#Comment t h e f o l l o w i n g l i n e

# p l t . s a v e f i g ( ’ . . / f i g s / seq monotone

. eps ’ )

p l t . show ( )

Problem 2.2. Prove that xn is monotonically de-
creasing.

Proof. From (2.3), it can be shown that

xn =
1

2

(

1 +
1

3n−1

)

(2.4)
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Thus,

xn−1 − xn =
2

3n−1
> 0⇒ xn−1 > xn (2.5)

which is the condition for xn to be monotonically
decreasing.

Problem 2.3. Prove that xn is monotonically de-
creasing using induction.

Proof. Since x1 = 1, x2 =
2
3
< x1. Let xk < xk−1 .

Then

xk+1 − xk =
xk + 1

3
− xk−1 + 1

3
(2.6)

=
xk − xk−1

3
< 0 (2.7)

Thus, xk < xk−1 ⇒ xk+1 < xk. This shows that xn is
decreasing.

Problem 2.4. Show that xn is bounded.

Proof. From (2.4), it is obvious that

|xn| ≤ 1 (2.8)

Thus, xn is bounded. �

Problem 2.5. Find the limit of xn.

Solution: From Fig. 2.1, it is clear that the limit is
1
2
.

Problem 2.6. Show that the limit of xn is 1
2
.

Problem 2.7. Show that the sequence defined by

xn =















2 n = 1√
2xn−1 + 1 n > 1

(2.9)

is monotone as well as bounded. Find its limit.
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Proposition 2.1. Any monotone sequence that is
bounded is convergent.

Problem 2.8. Graphically show that xn =
√

n + 1−1
is divergent.

Solution: The following code results in Fig. 2.8. It
is obvious that the series does not converge.

import numpy as np
import m a t p l o t l i b . p y p l o t as p l t

n = np . l i n s p a c e ( 0 , 1 e3 , 1 0 0 )
x n = np . s q r t ( n+1) − 1
p l t . p l o t ( n , x n )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $n$ ’ )
p l t . y l a b e l ( ’ $x n$ ’ )
#Comment t h e f o l l o w i n g l i n e

# p l t . s a v e f i g ( ’ . . / f i g s / seq d i verge .

eps ’ )

p l t . show ( )
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Problem 2.9. Show that xn in Problem 2.8 is in-
creasing.

Proof. Since xn > xn−1 for all n, the sequence is
increasing. �

Problem 2.10. Show that xn in Problem 2.8 is
unbounded.

Proof. For every M, it is possible to find an integer
n > M2−1⇒

√
n + 1 > M. Thus, xn is unbounded.

�

Proposition 2.2. A monotone unbounded sequence
is divergent.

3 Cauchy Sequence

Definition 3.1. The sequence xn is Cauchy if for
every ǫ > 0, there exists an integer N such that

|xm − xn| < ǫ whenever n,m ≥ N (3.1)

Problem 3.1. Show that

xn =
1

n2
(3.2)

is a Cauchy sequence.

Proof. Let m > n > N.

|xm − xn| =
∣

∣

∣

∣

∣

1

m2
−

1

n2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(m − n) (m + n)

m2n2

∣

∣

∣

∣

∣

(3.3)

The numerator in (3.3)

|(m − n) (m + n)| < 2m2 (3.4)

Thus,

|xm − xn| <
2

n2
<

2

N2
< ǫ (3.5)

Thus it is possible to find an N given ǫ for xn such
that xn is Cauchy.

Proposition 3.1. Every Cauchy sequence is conver-
gent and vice versa.

Problem 3.2. Show that

xn = 1 +
1

2!
+

1

3!
· · · +

1

n!
(3.6)

is a Cauchy sequence.

Problem 3.3. Is xn =
√

n a Cauchy sequence?


