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Continuity

P. N. V. S. S. K. HAVISH∗, S. S. Ashish∗, J. Balasubramaniam† and G V V Sharma∗

Abstract—This manual discusses problems related to

continuity through examples. Python scripts are provided

to supplement the theory.

Definition 1. For every ǫ > 0, there exists a δ > 0
such that

|x − x0| < δ⇒ | f (x) − f (x0)| < ǫ (0.1)

In terms of limits, continuity at a point c can be
defined as follows:

lim
x→c

f (x) = f (c) (0.2)

Problem 1. Show that f (x) =
√

x is continuous by
using the ǫ − δ definition.

Proof. Using Definition 1,
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if |x − x0| < δ. Hence, f (x) =
√

x is continutious.
Fig. 1 verifies this result.

# from future i m p o r t d i v i s i o n

import numpy as np
import m a t p l o t l i b . p y p l o t as p l t

x = np . l i n s p a c e ( 0 , 1 0 , 5 0 )
fx = np . s q r t ( x )

p l t . p l o t ( x , fx )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )
# # # #Comment t h e f o l l o w i n g l i n e
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p l t . s a v e f i g ( ’ . . / f i g s / 1 . eps ’ )
p l t . show ( )
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Problem 2. Verify that

|sin x| ≤ |x| (2.1)

Solution: The following code yields Fig. 2.

import numpy as np
import m a t p l o t l i b . p y p l o t as p l t

x = np . l i n s p a c e (−np . p i , np . p i , 5 0 )
fx = np . abs ( np . s i n ( x ) )

p l t . p l o t ( x , fx , x , np . abs ( x ) , ’ o ’ )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ | \ s i n ( x ) | $ ’ )
p l t . y l im ( [ 0 , 1 . 3 ] )
# # # #Comment t h e f o l l o w i n g l i n e

p l t . s a v e f i g ( ’ . . / f i g s / 2 . eps ’ )
p l t . show ( )
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Fig. 2: |sin x| ≤ |x|

Problem 3. Show that f (x) = sin x is continuous.

Proof. Since

|sin x − sin x0| = 2
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∵ cos
(

x+x0

2

)

≤ 1. From Fig. 2,
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< |x − x0| < δ = ǫ (3.3)

The following code plots Fig. 3 verifying that sin x

is indeed continuous.

import numpy as np
import m a t p l o t l i b . p y p l o t as p l t

x = np . l i n s p a c e (−2∗np . p i , 2 ∗ np . p i
, 5 0 )

fx = np . s i n ( x )

p l t . p l o t ( x , fx )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ \ s i n ( x ) $ ’ )
# p l t . y l i m ( [ 0 , 1 . 3 ] )

# # # #Comment t h e f o l l o w i n g l i n e

p l t . s a v e f i g ( ’ . . / f i g s /2 1 . eps ’ )
p l t . show ( )
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Problem 4. Investigate the continuity of the follow-
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Fig. 3

ing function at x = x0

f (x) =















sin(πx) 0 < x < 1

ln(x) 1 < x < 2
, x0 = 1 (4.1)

Solution: The following code plots f (x) and Fig. 4
indicates that f (x) is indeed continuous at x0 = 1.

import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
n = np . a r a n g e ( 0 , 2 , 1 e−3)
b= [ ]
f o r i in n :

i f ( i <=1) :
b . append ( np . s i n ( np

. p i ∗ i ) )
e l s e :

b . append ( np . l o g ( i )
)

p l t . p l o t ( n , b )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )
p l t . s a v e f i g ( ’ . . / f i g s / 4 . eps ’ )
p l t . show ( )

Consider the left limit at x0 = 1. So,

lim
x→1−

f (x) = lim
x→1−

sin(πx) = sin(π) = 0. (4.2)

Similarly,

lim
x→1+

f (x) = lim
x→1+

ln(x) = ln(1) = 0. (4.3)

From Definition 1, f (x) is continuous at x0 = 1.
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Proposition 1. If f and g are two continuous
functions, then the functions :

• f + g

• f − g

• f g

•
f

g

are also continuous wherever they are defined. Note
that the similar properties hold for limits at any point
a.

Problem 5. Prove that limx→0
x2 sin( 1

x )
sin(x)

= 0.

Solution: The following code plots Fig. 5 indicating
that the above result is true.

from future import d i v i s i o n
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
x = np . a r a n g e (1 e −5 , 0 . 2 , 1 e−4)
f = ( ( x ∗∗2) ∗np . s i n ( 1 / x ) ) / ( np . s i n ( x ) )
p l t . p l o t ( x , f )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )
p l t . s a v e f i g ( ’ . . / f i g s / 5 . eps ’ )
p l t . show ( )

Rearranging the given function as

f (x) =
x sin

(

1
x

)

sin(x)

x

(5.1)

Let

g(x) = x sin

(

1

x

)

, h(x) =
sin(x)

x
(5.2)
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By proposition 1,

lim
x→0

f (x) =
limx→0 g(x)

limx→0 h(x)
. (5.3)

∵ limx→0 g(x) = 0 and limx→0 h(x) = 1, from (5.3),

limx→0 f (x) = 0
1
= 0.

Problem 6. Find the domain of continuity of f (x) =√
1 − x2.

Solution: The following code plots f (x) in the
continuity domain. From Fig. 6 it is trivial that f (x)
is continuous in its domain.

from future import d i v i s i o n
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
x = np . a r a n g e ( −1 ,1 ,1 e−3)
f=np . s q r t (1−x ∗∗2)
p l t . p l o t ( x , f )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )
p l t . s a v e f i g ( ’ . . / f i g s / 6 . eps ’ )
p l t . show ( )

The function f (x) is continuous for all x for
which it is defined. f (x) is defined for x such that

1 − x2 ≥ 0 =⇒ |x| ≤ 1 (6.1)

∴ the domain of continuity of f (x) is |x| ≤ 1

Proposition 2. Let I be an interval having the point
a as a limit point. Let g, f and h be functions defined
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Fig. 6: f (x) =
√

1 − x2

on I, except possibly at a itself. Suppose that for
every x in I not equal to a, we have

g(x) ≤ f (x) ≤ h(x) (6.2)

and also if limx→a g(x) = limx→a h(x) = L then
limx→a f (x) = L.

Problem 7. Prove that

f (x) =















x sin
(

1
x

)

x , 0

5 x = 0
(7.1)

is discontinuous at x = 0 and redefine f (x) such that
it is continuous at x = 0.

Proof. The following code plots f (x) where f (0) =
5 in the upper half and f (0) = 0 in the lower half.
From upper half of Fig. 7 it is trivial that f (x) is
discontinuous at x = 0 and if f (0) = 0, it is trivial
that it is continuous.

from future import d i v i s i o n
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
n = np . a r a n g e (1 e−5 ,1 e−1 ,1 e −3 /5 )
f=n∗np . s i n ( 1 / n )
n [0 ]=0
f [0 ]=5
p l t . f i g u r e ( 1 )
p l t . s u b p l o t ( 2 1 1 )
p l t . p l o t ( n , f )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )

n = np . a r a n g e (1 e−5 ,1 e−1 ,1 e −3 /5 )
f=n∗np . s i n ( 1 / n )
n [0 ]=0
f [0 ]=0
p l t . s u b p l o t ( 2 1 2 )
p l t . p l o t ( n , f )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )
p l t . s a v e f i g ( ’ . . / f i g s / 7 . eps ’ )
p l t . show ( )
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Fig. 7

∵

−1 ≤ sin

(

1

x

)

≤ 1 =⇒ −x ≤ x sin

(

1

x

)

≤ x, x > 0,

(7.2)

from Proposition 2, as x → 0+, x sin
(

1
x

)

→ 0.
It can be shown that this is true when x → 0−.
So limx→0 f (x) = 0. According to Definition 1,
limx→0 f (x) = f (0). But f (0) = 5 , 0. ∴ f (x) is
discontinuous at x = 0. For f (x) to be continuous
at x = 0 define f (0) = 0. �

Problem 8. Prove that all polynomials of finite
degree over R are continuous.

Proof. Consider a function f (x) such that

f (x) = a0 + a1x + a2x2 + ...... + anxn (8.1)

Clearly f (x) is a linear combination of some real
numbers and the powers of x. So if g(x)=x is contin-
uous, then by Proposition 1 we can say that f (x) is
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continuous. By definition 1 it can be trivially shown
that g(x) is continuous. So, f (x) is continuous. �

Problem 9. Give examples of the following:

1) Function which is continuous at finite number
of points.

2) Function which is nowhere continuous on R.

Solution:

1)

f (x) =















(x − 2)(x − 3) x ∈ Q
0 x ∈ R − Q

(9.1)

which is continuous only at x = 2, x = 3.
2)

f (x) =















1 x ∈ Q
0 x ∈ R − Q

(9.2)

Problem 10. Consider two continuous functions
f (x), g(x) such that f (x) = g(x) for every rational
x. Prove that equality holds for all x in R

Proof. Consider the function

h(x) = f (x) − g(x), x ∈ R (10.1)

By proposition 1, h(x) is continuous at all real x.
Consider an arbitrary rational number c and its δ
neighborhood. Clearly h(x) is equal to zero at all
rational x. ∵ h(x) is continuous limx→c h(x) = h(c) =
0. This implies that h(x) must be zero even in the
neighborhood of c which consists of infinite number
of irrationals. ∴ h(x) = 0 for all x ∈ R. h(x) = 0 =⇒
f (x) = g(x), x ∈ R. �

Proposition 3. Consider a function f : I → R where
I = [a, b]. If f (a) < 0 < f (b) or f (a) > 0 > f (b),
then ∋ c ∈ I such that f (c) = 0.

Problem 11. Show that every polynomial of odd
degree with real coefficients has atleast one real
root.

Proof. Consider f (x) = a0+a1x+a2 x2+ ......+anxn,

n is odd. Let g(x) = f (x)

xn =
a0

xn +
a1x

xn +
a2x2

xn + ......+ an.
Consider the interval [a, b] where a ≪ 0, b ≫ 0
g(a) → 1 as a → −∞. Similarly g(b) → 1 as b →
∞. ∵ n is odd, for negative values of x, xn < 0 and
for positive values of x it is xn > 0. But g(x) =
f (x)

xn = 1 > 0 in both cases. So f (x) < 0 at x = a

and f (x) > 0 at x = b. ∴ by proposition 3, f (x) has
atleast one root in the interval I. Hence, proved. �

Proposition 4. Consider a function f : I → R where
I = [a, b]. If f (a) < k < f (b), k ∈ R, then ∋ c ∈ I

such that f (c) = k.

Problem 12. Let I=[0,1] and f (0) = f (1) where f

is continuous on I. Prove that ∋ c ∈ [0, 1
2
] such that

f (c) = f (c + 1
2
)

Proof. Consider h(x) = f (x) − f (x + 1
2
), x ∈ [0, 1

2
].

h(0) = f (0) − f (1
2
)

h(1
2
) = f (1

2
) − f (1) = f (1

2
) − f (0)(∵ f (0) = f (1))

=⇒ h(1
2
) = −( f (0) − f (1

2
) = −h(0) So h(0) < 0 <

h(1/2). By proposition 4, ∋ c ∈ [0, 1
2
] such that

h(c) = 0. =⇒ f (c) − f (c + 1
2
) = 0 =⇒ f (c) =

f (c + 1
2
). Hence, proved. �

Proposition 5. Every bounded sequence has a con-
vergent sub-sequence.

Problem 13. Let f : I → R be a continuous
function on I where I = [a, b]. Prove that f (x) is
bounded.

Proof. Let f be unbounded on I. So, ∋ a sequence
xn ∈ I such that | f (xn)| > n. Because a ≤ x ≤
b, the sequence xn is bounded. By proposition 5,
∋ a sub-sequence xnk

which converges to a value
L ∈ I. ∵ f is continuous, limk→∞ f (xnk

) = f (L).
This implies that the sequence f (xnk

) is convergent
=⇒ f (xnk

) is bounded. But this is a contradiction
to our assumption that f (x) is unbounded. ∴ every
continuous function is bounded on a closed interval.

�

Problem 14. Prove that a continuous function at-
tains its bounds on a closed interval I.

Proof. Let M be the least upper bound of the
continuous function f (x). We have to prove that f (x)
takes the value M for some c ∈ I. ∵ M is the least
upper bound of f (x), the number M − 1

n
is not the

least upper bound of f (x).
=⇒ ∋ a sequence cn ∈ I (where limn→∞ cn = c) such
that M − 1

n
≤ f (cn) ≤ M.

=⇒ limn→∞ f (cn) = f (c) = M (by proposition 2.
The above result clearly states that f (c) = M for
some c ∈ I. In the similar way, we can prove that it
attains the lower bound for some d ∈ I. �


