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Functional Series

P. N. V. S. S. K. HAVISH∗, S. S. Ashish∗, J. Balasubramaniam† and G V V Sharma∗

Abstract—This manual discusses problems related to

functional series through examples. Python scripts are

provided to supplement the theory.

Definition 1. Consider a function f (x) such that its
power series expansion at c ∈ R is given by:

f (x) =

∞
∑

0

an(x − c)n (0.1)

The real number R is said to be the radius of
convergence of f (x) if for every x in the interval
(−R + c,R + c), f (x) converges. The interval is
called the interval of convergence. The radius of
convergence can be found by using the condition for
convergence in either root test or ratio test(because
the power series itself is a series in n). The following
is a proof using ratio test.

Proof.

f (x) =

∞
∑

0

an(x − c)n (0.2)

Applying ratio test condition for the convergence
of f (x)

=⇒ lim
n→∞

∣

∣

∣

∣

∣

∣

an+1(x − c)n+1

an(x − c)n

∣

∣

∣

∣

∣

∣

< 1 (0.3)

Let

lim
n→∞

∣

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

∣

= R(> 0) =⇒
|x − c|

R
< 1 (0.4)

=⇒ |x − c| < R The above inequality gives the
interval [−R + c,R − c] in which f (x) converges
depending on R value. If R = 0 then f (x) con-
verges nowhere on R and if R = ∞, then f (x)
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converges everywhere on R. Similarly conclusion
can be achieved using root test. �

The following is an example for finding the
interval and radius of convergence.

Problem 1. Find the interval of convergence of the
power series

f (x) =

∞
∑

0

n3

3n
xn. (1.1)

Solution:

Using Definition 1,

an =
n3

3n
=⇒ R = lim

n→∞

n3

3n

3n+1

(n + 1)3
= lim

n→∞

3n3

(n + 1)3
= 3

(1.2)

∴ R = 3. So, the radius of convergence is 3 and the
interval being (−3, 3). The following graph plots the

power series
∑∞

0
n3

3n xn. Clearly for |x| ≥ 3, the series
diverges rapidly whereas it takes values smaller
values for x in the interval (−3, 3).

from future import d i v i s i o n
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t

x = np . a r a n g e ( −3 . 0 0 0 1 , 3 . 0 0 0 1 , 1 e−3)
y1 = [ ]
f o r x1 in x :

z=0
f o r i in range ( 1 , 1 0 ) :

z=z+( i ∗∗3 /3∗∗ i ) ∗ (
x1 ∗∗ i )

y1 . append ( z )
p l t . p l o t ( x , y1 )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )
# # # #Comment t h e f o l l o w i n g l i n e

p l t . s a v e f i g ( ’ . . / f i g s / 1 . eps ’ )
p l t . show ( )
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Fig. 1

Definition 2. Let D be a subset of R and let fn be
a sequence of real valued functions defined on D.
Then fn converges pointwise to f if given any x
in D and given any ǫ > 0, there exists a natural
number N = N(x, ǫ) such that | fn(x) − f (x)| < ǫ for
every n > N. The above definition implies uniform
convergence if the inequality holds for every x ∈ D.

Problem 2. For each n ∈ N, let fn(x) =
(

x − 1
n

)2
for

x ∈ [0, 1]. Find the following:

• Does fn converge pointwise on [0,1].
• Does it converge uniformly.

Solution:

lim
n→∞

fn(x) = f (x) = x2 (2.1)

for x in [0,1]. Consider | fn(x) − f (x)|. Since x ∈
[0, 1], there exists n ∈ N such that x = 1

n
=⇒

| fn(x) − f (x)| =
∣

∣

∣

∣

∣

∣
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(

1

n

)

− f

(

1

n

)
∣

∣

∣

∣

∣

∣

(2.2)

=⇒
| fn(x) − f (x)| =

1

n2
(2.3)

CLearly, 1
n2 is greater than ǫ for some values of n.

So, fn(x) does not converge uniformly. The follow-
ing code proves our first result Fig. 2.

import numpy as np
import m a t p l o t l i b . p y p l o t as p l t

n=1e5

x = np . a r a n g e ( 0 , 1 , 1 e−3) # f o r some

x l e s s than 1 can be changed .

fx =(x−1 /n ) ∗∗2

p l t . p l o t ( x , fx )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $n$ ’ )
p l t . y l a b e l ( ’ $f n$ ’ )
# # # #Comment t h e f o l l o w i n g l i n e

p l t . s a v e f i g ( ’ . . / f i g s / 2 . eps ’ )
p l t . show ( )
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Fig. 2

Definition 3. Taylor Series: The taylor series of a
n-time differentiable function f (x) at a point a is
given by the following equation: Note: Maclaurian
series is nothing but taylor series of f (x) at x = 0.

f (x) =

∞
∑

n=0

f n(a)

n!
xn (2.4)

Problem 3. Obtain the taylor series of f (x) = ex at
x = 0.

Solution: Clearly, f n(0) = 1 for f (x) = ex. So

f (x) =

∞
∑

n=0

1

n!
xn (3.1)

The following code plots Fig. 3 verifying that the
taylor expansion is indeed correct.

from future import d i v i s i o n
import numpy as np
import math as m
import m a t p l o t l i b . p y p l o t as p l t
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x = np . l i n s p a c e ( 0 , 1 , 1 0 0 0 )
y1= [ ]
x1=np . a r r a y ( x )
x=np . l i n s p a c e ( 0 , 1 , 1 0 )
x2=np . a r r a y ( x )
y=np . exp ( x1 )
f o r x in x :

z=1
f o r i in range ( 1 , 6 ) :

z=z+x∗∗ i /m.
f a c t o r i a l ( i )

y1 . append ( z )

p l t . p l o t ( x1 , y )
p l t . p l o t ( x2 , y1 , ’ o ’ )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )
# # # #Comment t h e f o l l o w i n g l i n e

p l t . s a v e f i g ( ’ . . / f i g s / 3 . eps ’ )
p l t . show ( )
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Definition 4. For a periodic function f (x)(with pe-
riod 2L), the fourier series is given by the following
equation:

f (x) = a0 +

∞
∑

n=1

(

an cos
(

nπ

L
x

)

+ bn sin
(

nπ

L
x

))

(3.2)

where the coefficients are given by:

a0 =
1

2L

∫ L

−L

f (x)dx (3.3)

an =
1

L

∫ L

−L

f (x) cos (nx) dx (3.4)

bn =
1

L

∫ L

−L

f (x) sin (nx) dx (3.5)

where n ≥ 1.

Problem 4. Find the fourier series expansion of
f (x) =

√
1 − cos x on (0, 2π) and prove the follow-

ing result:
1

2
=

∞
∑

n=1

1

4n2 − 1
(4.1)

Solution: Rewriting f (x) interms of sin
(

x

2

)

=⇒
f (x) =

√
2 sin

(

x
2

)

. Clearly, x
2
∈ (0, π) where sin

(

x
2

)

is positive. So, we need to expand f (x) =
√

2 sin
(

x
2

)

.
By careful application of 4, we can conclude the
following:

a0 =
4
√

2

π
(4.2)

an =
−4
√

2

π
(

4n2 − 1
) (4.3)

and that bn = 0 =⇒
√

1 − cosx =
4
√

2

π
−
∞
∑

n=1

4
√

2

π
(

4n2 − 1
) (4.4)

atx = 0, the equation becomes

4
√

2

π
=

∞
∑

n=1

4
√

2

π
(

4n2 − 1
) (4.5)

=⇒
1

2
=

∞
∑

n=1

1

4n2 − 1
(4.6)

Hence, proved. Some similar results can also be
proved using fourier series.

Problem 5. Suppose

fn(x) = A0 +

n
∑

k=1

(Ak cos kx + Bk sin kx) (5.1)

be a trigonometric polynomial and f (x) be a pe-
riodic function with period=2π. Show that if fn(x)
minimises the integral E =

∫ π

−π ( f (x) − fn(x))2, then
the coeffecients in fn(x) are same as the coefficients
of the fourier series of f (x).

Proof. Let a0, a1, ..., an and b1, b2, ..., bn

be the fourier series coeffecients of f (x).
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Consider the given integral. Expanding it gives
∫ π

−π

(

f 2 − 2 f fn + fn
2dx

)

. It can be trivially shown
that the following equations hold true:

∫ π

−π
cos kx = 0 (5.2)

∫ π

−π
cos2 kx = π (5.3)

∫ π

−π
cos kx sin kx = 0 (5.4)

Same results hold true for sin kx. We can prove
the required result by using the above equations.
Consider

∫ π

−π fn
2dx. On applying the above equations

and simplifying, we end up with the following
expression:

∫ π

−π
fn

2dx = π















2A2
0 +

n
∑

k=1

(

A2
k + B2

k

)















(5.5)

On similar lines, we can get the following expres-
sion for

∫ π

−π f fndx

∫ π

−π
f fndx = 2π















2A0a0 +

n
∑

k=1

(Akak + Bkbk)















(5.6)

On careful observation, one can conclude
that the above equation is nothing but
the dot product between the vectors
(A0, A0, A1, A2, ...., B1, B2, ....), (a0, a0, a1, a2, ..., b1, b2, ....)
whose maximum will minimise the error(∵ it has
a negative sign in the expansion). This happens
only if all the corresponding components are equal.
=⇒ for minimum error, Ak = ak, 0 ≤ k ≤ n. �

Problem 6. Expand 1
1+x2 in powers of x and hence

find a power series expansion for tan−1 x.

Solution: The following code plots 1
1+x2 and its

power series expansion in (−1, 1) which verifies our
answer.

from future import d i v i s i o n
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
x = np . a r a n g e ( −1 ,1 ,1 e−3)
x1=np . a r a n g e ( −1 ,1 ,1 e−1)
f =1 /(1+ x ∗∗2)
f1 = [ ]
f o r x2 in x1 :

y=0
f o r j in range ( 0 , 1 0 0 ) :

y=y+(( −1) ∗∗ j ) ∗ ( x2
∗∗ ( 2∗ j ) )

f1 . append ( y )
p l t . p l o t ( x , f )
p l t . p l o t ( x1 , f1 , ’ o ’ )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )
p l t . s a v e f i g ( ’ . . / f i g s / 6 . eps ’ )
p l t . show ( )

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x
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0.8

1.0

f(x
)

∵ we are expanding in powers of x, we can safely
assume that |x| < 1. So, by using GP’s infinite
summation formula, =⇒

1

1 + x2
=

1

1 − (−x2)
= 1−x2+x4−x6+ .....(∞) (6.1)

Integrating(indefinite) on both sides(∵ both the sides
of the equation are continuous), =⇒

tan−1 x = x −
x3

3
+

x5

5
−

x7

7
+ .... (6.2)

The above equation is the power series expansion
for tan−1 x at x = 0. The following figure verifies
the above equation.

from future import d i v i s i o n
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
x = np . a r a n g e ( −1 ,1 ,1 e−3)
x1=np . a r a n g e ( −0 . 9 9 9 , 0 . 9 9 9 9 , 1 e−1)
f=np . a r c t a n ( x )
f1 = [ ]
f o r x2 in x1 :

y=0
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f o r j in range ( 1 , 1 0 0 0 ) :
y=y+(( −1) ∗∗ ( j +1) )
∗ ( x2 ∗∗ j / ( 2 ∗ j −1) )

f1 . append ( y )
p l t . p l o t ( x , f )
p l t . p l o t ( x1 , f1 , ’ o ’ )
p l t . g r i d ( )
p l t . x l a b e l ( ’ $x$ ’ )
p l t . y l a b e l ( ’ $ f ( x ) $ ’ )
p l t . s a v e f i g ( ’ . . / f i g s / 7 . eps ’ )
p l t . show ( )

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x
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)

Definition 5. Riemann Sum: Suppose f : [a, b]→ R

and partition P = [x0, x1], [x1, x2], ...., [xn−1, xn], then
the sum S =

∑n
i=1 f (x∗

i
)∆xi is called Riemann Sum

over the interval [a, b] whose limit at ∞ gives the
definite integral of f (x) over the interval [a, b].

Problem 7. Evaluate
∫ b

a
exdx using Riemann Sum

method.

Solution: Let x∗i = a+ i∆x where ∆x = b−a

n
where n

is the number of partitions. =⇒ f (x∗
i
) = eaei∆x. Do-

ing the summation, from 0 to n gives the following
equation:

n
∑

i=1

f (x∗i )∆xi = ea























eb−a − 1

e
b−a

n −1
b−a

n























(7.1)

On applying the limit(n→ ∞), the summation boils
down to eb − ea which is the required value(∵ the
denominator tends to 1 as n→ ∞).

Definition 6. In mathematical analysis, an improper
integral is the limit of a definite integral as an

endpoint of the interval(s) of integration approaches
either a specified real number or ∞ or −∞ or,
in some cases, as both endpoints approach limits.
Symbolically, it is written as follows:

lim
b→∞

∫ b

a

f (x)dx, lim
a→−∞

∫ b

a

f (x)dx (7.2)

Similar representation can be given for integrals
over finite intervals. If the limit value is finite, then
the integral is said to converge to that finite value.

Problem 8. Comment on the convergence of
∫ ∞

0
x sin x.

Solution: Consider the following integral
∫ t

0
x sin x

=⇒
∫ t

0

x sin x = −t cos t + sin t (8.1)

Clearly as t → ∞, the value of the integral diverges
to −∞. ∴ the integral diverges.

Proposition 1. The function of the form
∫ ∞

0
ts−1e−tdt, s > 0 is called the gamma function. It

is denoted by Γ(s).

Problem 9. Discuss the convergence of Γ function
and prove that Γ(n + 1) = n!.

Solution: Using 1,

Γ(s) =

∫ ∞

0

ts−1e−tdt =

∫ 1

0

ts−1e−tdt +

∫ ∞

1

ts−1e−tdt

(9.1)

Here
∫ 1

0
ts−1e−tdt <

∫ 1

0
ts−1dt which converges to 1

s
.

For the second term, we can use the fact that expo-
nential function grows faster than any polynomial.
So, ∃N such that for t ≥ N, ts−1 < e

t
2 . Again the

integral can be split as
∫ ∞

1

ts−1e−tdt =

∫ N

1

ts−1e−tdt +

∫ ∞

N

ts−1e−tdt (9.2)

which is less than
∫ N

1

ts−1e−tdt +

∫ ∞

N

e−t/2dt (9.3)

Clearly, the above equation takes a finite value.
So,

∫ ∞
1

ts−1e−tdt < ∞. ∴ Γ function converges. On
applying integration by parts and simplifying we
end up with the following equation

Γ(n) = (n − 1)Γ(n − 1) = (n − 1)!Γ(1) (9.4)

It is trivial that Γ(1) = 1. So, Γ(n) = (n − 1)! which



6

=⇒ Γ(n + 1) = n!.

Problem 10. Calculate the following for the cycloid
formed by x = r(t − sin t), y = r(1 − cos t)

• Arc length of one arc(0 ≤ t ≤ 2π)
• Surface area of the solid generated by rotating

this arc about the x− axis.

Solution: The following code plots the given curve
for 0 ≤ t ≤ 2π.

from future import d i v i s i o n
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t

k=np . p i
t = np . a r a n g e ( 0 , 2∗ np . p i , 1 e−3)
x=4∗( t −np . s i n ( t ) )
y=4∗(1−np . cos ( t ) )
b= [ ]
p l t . p l o t ( x , y )
p l t . g r i d ( )
# # # #Comment t h e f o l l o w i n g l i n e

p l t . s a v e f i g ( ’ . . / f i g s / 8 . eps ’ )
p l t . show ( )

0 5 10 15 20 25

0

1

2

3

4

5

6

7

8

We know that dr =

√

(

dx

dt

)2
+

(

dy

dt

)2
dt. So, total arc

length is nothing but
∫ 2π

0
dr. By careful simplifica-

tion, we get:

dx

dt
= r(1 − cos t) (10.1)

dy

dt
= r sin t (10.2)

Substituting the above in the required integral yields
∫ 2π

0

2r sin
t

2
(10.3)

Whose value is 8r. So, the arc length is 8r. The

surface area is given by the integral
∫ 2π

0
2πydr. So,

the surface area=
∫ 2π

0
2π2r2(1−cos t) sin t

2
. On proper

simplification, this integral yields 8πr2. So, the arc
length is 8r and the surface area is 8πr2.

Proposition 2. Let fn(x) be a sequence of integrable
functions on I such that each fn is non-negative on
I and fn converges(pointwise) to f . Then fn is said
to be dominantly convergent on I if there is some
other integrable function on I such that | f (x)| < g(x)
almost everywhere on I. The above implies that

lim
n→∞

∫

I

fn(x)dx =

∫

I

lim
n→∞

fn(x)dx (10.4)

Similar kind of definition is applicable for series.

Problem 11. Prove or disprove that the series
∑∞

n=1
xn

n
is dominant on [0, 1].

Solution: By 1, it is clear that the given series
converges in [0, 1]. Also,

∞
∑

n=1

xn

n
<

∞
∑

n=1

xn (11.1)

∵ x < 1,
∞
∑

n=1

xn =
x

1 − x
(11.2)

The above function is integrable on [0, 1] and we
also know that the series converges to some function
f which will be less than x

1−x
. ∴ the above function

is dominated on [0, 1].


